function n. 1.功能,官能,機(jī)能,作用。 2.〔常 pl.〕職務(wù),職責(zé)。 3.慶祝儀式;(盛大的)集會(huì),宴會(huì)。 4.【數(shù)學(xué)】函數(shù);與其他因素有密切關(guān)系的事。 The function of the ear is to listen. 耳的功能是聽。 the function of education 教育的功能。 discharge one's functions 盡職。 the functions and powers of the National Congress 全國代表大會(huì)的職權(quán)。 a controllable function【火箭】遙控程序。 public [social] function招待會(huì),文娛晚會(huì),社交集會(huì)。 vital functions 生命機(jī)能。 vi. (器官等)活動(dòng),(機(jī)器等)運(yùn)行,發(fā)揮作用。 function as teacher 擔(dān)任教師。 a sofa functioning as a bed 兼當(dāng)床用的沙發(fā)。 The lathe doesn't function well. 這臺(tái)車床有毛病。 function digit [letter] 【計(jì)算機(jī)】操作數(shù)碼[字碼]。
function of function迭函數(shù); function合成函數(shù); 元函數(shù)
In the finite element method, one of the restrictions on the approximating functions is relaxed . 在有限單元方法中,放開了定近似函數(shù)的限制。
When adding an entropy function as regularizing term to the lagrangian function , we obtain a smooth approximate function for m ( x ) , which turns out to be the exponential penalty function 當(dāng)將熵函數(shù)作為正則項(xiàng)加到拉格朗日函數(shù)上,我們得到了逐點(diǎn)逼近于m ( x )的光滑函數(shù)。經(jīng)證明,該函數(shù)即為指數(shù)罰函數(shù)。
By constructing approximate functions and using prior estimate and conversion of variable , it is proved that the inverse problem has weak solution for given initial value , boundary value and the oil output 通過變量和函數(shù)變換,作逼近函數(shù)和估計(jì)等方法,證明了對(duì)給定的初邊值和石油產(chǎn)量,此反問題存在弱解。
Ph linearization method is employed to solve a nonlinear reynolds equation for a steady state and micro - scale flow field , and the approximate function expressions of gas dynamic pressure and velocity in the spiral groove are obtained 摘要應(yīng)用ph線性化方法、迭代法,近似求解了螺旋槽內(nèi)穩(wěn)態(tài)微尺度流動(dòng)場(chǎng)的非線性雷諾方程,求得了氣體動(dòng)壓和速度分布的解析解。
2 . for the problem with size , stress and displacement constraints , the stress constraint is transformed into movable lower bounds of sizes , the displacement constraint is transformed into an approximate function which explicitly includes design variables by using mohr integral theory . a mathematical programming model of the optimization problem is set up . the dual programming of the model is approached into a quadratic programming model 2 .對(duì)于尺寸、應(yīng)力和位移約束的問題,將應(yīng)力約束化為動(dòng)態(tài)下限,用單位虛荷載方法將位移約束近似顯式化,構(gòu)造優(yōu)化問題的數(shù)學(xué)規(guī)劃模型,將其對(duì)偶規(guī)劃處理為二次規(guī)劃問題,采用lemke算法進(jìn)行求解,得到滿足尺寸、應(yīng)力和位移約束條件的截面最優(yōu)解。
This feature reflects the physical phenomenon of breaking of waves and development of shock waves . in the fields of fulid dynamics , ( 0 . 2 . 1 ) is an approximation of small visvosity phenomenon . if viscosity ( or the diffusion term , two derivatives ) are added to ( 0 . 2 . 1 ) , it can be researched in the classical way which say that the solutions become very smooth immediately even for coarse inital data because of the diffusion of viscosity . a natural idea ( method of regularity ) is obtained as follows : solutions of the viscous convection - diffusion pr oblem approachs to the solutions of ( 0 . 2 . 1 ) when the viscosity goes to zeros . another method is numerical method such as difference methods , finite element method , spectrum method or finite volume method etc . numerical solutions which is constructed from the numerical scheme approximate to the solutions of the hyperbolic con - ervation laws ( 0 . 2 . 1 ) as the discretation parameter goes to zero . the aim of these two methods is to construct approximate solutions and then to conside the stability of approximate so - lutions ( i , e . the upper bound of approximate solutions in the suitable norms , especally for that independent of the approximate parameters ) . using the compactness framework ( such as bv compactness , l1 compactness and compensated compactness etc ) and the fact that the truncation is small , the approximate function consquence approch to a function which is exactly the solutions of ( 0 . 2 . 1 ) in some sense of definiton 當(dāng)考慮粘性后,即在數(shù)學(xué)上反映為( 0 . 1 . 1 )中多了擴(kuò)散項(xiàng)(二階導(dǎo)數(shù)項(xiàng)) ,即使很粗糙的初始數(shù)據(jù),解在瞬間內(nèi)變的很光滑,這由于流體的粘性擴(kuò)散引起,這種對(duì)流-擴(kuò)散問題可用古典的微分方程來研究。自然的想法就是當(dāng)粘性趨于零時(shí),帶粘性的對(duì)流-擴(kuò)散問題的解在某意義下趨于無粘性問題( 0 . 1 . 1 )的解,這就是正則化方法。另一辦法從離散(數(shù)值)角度上研究?jī)H有對(duì)流項(xiàng)的守恒律( 0 . 1 . 1 ) ,如構(gòu)造它的差分格式,甚至更一般的有限體積格式,有限元及譜方法等,從這些格式構(gòu)造近似解(常表現(xiàn)為分片多項(xiàng)式)來逼近原守恒律的解。